

Mathématiques 2

PSI 7 C

CONCOURS CENTRALE SUPÉLEC

4 heures

Calculatrices autorisées

Notations

Pour tous entiers naturels non nuls n et p, on note:

- $-~\mathcal{M}_{n,p}(\mathbb{R})$ l'ensemble des matrices à n lignes et p colonnes à coefficients réels
- $-\ 0_{n,p}$ la matrice nulle de $\mathcal{M}_{n,p}(\mathbb{R})$
- $-~\mathcal{M}_{n}\left(\mathbb{R}\right)$ l'ensemble des matrices carrées d'ordre n à coefficients réels
- I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$
- $-GL_n(\mathbb{R})$ le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$
- O(n) le groupe des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$
- -SO(n) le groupe spécial orthogonal, c'est-à-dire le sous-groupe de O(n) formé des matrices dont le déterminant est égal à 1
- $-\ \Delta_{p+1}$ la matrice de $\mathcal{M}_{p+1}(\mathbb{R})$ définie par blocs de la façon suivante :

$$\Delta_{p+1} = \begin{pmatrix} 1 & 0_{1,p} \\ 0_{p,1} & -I_p \end{pmatrix}$$

 $-~O\left(1,p\right)$ l'ensemble des matrices L de $\mathcal{M}_{p+1}\left(\mathbb{R}\right)$ telles que :

$${}^{t}L\Delta_{p+1}L = \Delta_{p+1}$$

où tL désigne la transposée de la matrice L

- $-\ O^+(1,p)$ l'ensemble des matrices L de O(1,p) dont le déterminant est égal à 1
- $-\ O^-(1,p)$ l'ensemble des matrices L de O(1,p) dont le déterminant est égal à -1
- $-\quad \tilde{O}(1,p) \text{ l'ensemble des matrices } L=\left(\ell_{i,j}\right)_{1\leqslant i,j\leqslant p+1} \text{ de } O(1,p) \text{ telles que } \ell_{1,1}>0.$

Dans ce problème, on s'intéresse à l'ensemble O(1,p) pour p entier naturel non nul et en particulier pour $p \in \{1,3\}$. Dans le cas où p est égal à 3, l'ensemble O(1,p) est appelé groupe de Lorentz. Il joue un rôle fondamental en mécanique quantique.

I Étude du groupe orthogonal généralisé O(1,p)

Dans cette partie on fixe p entier naturel non nul.

- I.A Structure de O(1, p)
- **I.A.1)** La matrice Δ_{p+1} appartient-elle à l'ensemble O(1,p) ? à l'ensemble $O^+(1,p)$?
- **I.A.2)** Montrer que $O(1,p) = O^+(1,p) \cup O^-(1,p)$.
- **I.A.3)** Montrer que l'ensemble O(1,p) est un sous-groupe de $GL_{p+1}(\mathbb{R})$ et que $O^+(1,p)$ est un sous-groupe de O(1,p).
- **I.A.4**) Montrer que, pour toute matrice L élément de O(1,p), sa transposée tL est aussi élément de O(1,p).
- **I.A.5)** Montrer que les parties O(1,p), $O^+(1,p)$ et $O^-(1,p)$ de $\mathcal{M}_{p+1}(\mathbb{R})$ sont fermées.

I.B – $Endomorphismes\ pr\'eservant\ une\ forme\ quadratique$

Soient v et v' deux vecteurs de \mathbb{R}^{p+1} . On note V et V' les matrices colonnes, éléments de $\mathcal{M}_{p+1,1}(\mathbb{R})$, des vecteurs v et v' dans la base canonique de \mathbb{R}^{p+1} .

On définit

$$\varphi_{p+1}(v,v') = {}^tV\Delta_{p+1}V' = v_1v_1' - \sum_{i=2}^{p+1} v_iv_i'$$

 et

$$q_{p+1}(v)=\varphi_{p+1}(v,v)$$

On notera que φ_{p+1} est une forme bilinéaire symétrique et q_{p+1} la forme quadratique associée.

I.B.1) Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. Montrer que si, pour tous X et Y de \mathbb{R}^n , ${}^tXAY = {}^tXBY$ alors A = B.

I.B.2) Exprimer $\varphi_{p+1}(v,v')$ en fonction de $q_{p+1}(v+v')$ et $q_{p+1}(v-v')$.

I.B.3) Soient $L \in \mathcal{M}_{n+1}(\mathbb{R})$ et f l'endomorphisme de \mathbb{R}^{p+1} canoniquement associé.

Montrer que les trois assertions suivantes sont équivalentes :

i. $L \in O(1, p)$;

ii. $\forall (v, v') \in (\mathbb{R}^{p+1})^2$, $\varphi_{p+1}(f(v), f(v')) = \varphi_{p+1}(v, v')$;

iii. $\forall v \in \mathbb{R}^{p+1}, \, q_{p+1}\left(f(v)\right) = q_{p+1}\left(v\right).$

I.B.4) Si $L=(l_{i,j})_{i,j}\in O(1,p),\ v=(1,0,...,0)$ et v'=(0,1,0,...,0), donner les équations sur les $l_{i,j}$ correspondant à

$$\varphi_{p+1}(f(v),f(v')) = \varphi_{p+1}(v,v'), \quad q_{p+1}(f(v)) = q_{p+1}(v) \quad \text{et} \quad q_{p+1}(f(v')) = q_{p+1}(v')$$

Qu'obtient-on similairement avec ${}^{t}L$?

II Propriétés algébriques et géométriques du groupe $O^+(1,1)$

 $II.A - Structure de O^+(1,1)$

II.A.1) Soient a et b deux réels. Si a > 0 et $a^2 - b^2 = 1$ montrer qu'il existe un unique $\theta \in \mathbb{R}$ tel que $a = \operatorname{ch} \theta$ et $b = \operatorname{sh} \theta$.

II.A.2) Soient a, b, c et d quatre réels. On considère la matrice de $\mathcal{M}_2(\mathbb{R})$

$$L = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Écrire les équations sur a, b, c, d traduisant l'appartenance de L à O(1,1).

II.A.3) En déduire l'égalité:

$$O^+(1,1) = \left\{ \begin{pmatrix} \operatorname{ch} \gamma & \operatorname{sh} \gamma \\ \operatorname{sh} \gamma & \operatorname{ch} \gamma \end{pmatrix}, \; \gamma \in \mathbb{R} \right\} \cup \left\{ \begin{pmatrix} -\operatorname{ch} \gamma & \operatorname{sh} \gamma \\ \operatorname{sh} \gamma & -\operatorname{ch} \gamma \end{pmatrix}, \; \gamma \in \mathbb{R} \right\}$$

On note, dans la suite de cette partie II, pour tout réel γ , $L(\gamma) = \begin{pmatrix} \cosh \gamma & \sinh \gamma \\ \sinh \gamma & \cosh \gamma \end{pmatrix}$.

II.A.4) Montrer, pour tous réels γ et γ' , l'égalité :

$$L(\gamma)L(\gamma') = L(\gamma + \gamma')$$

En déduire que $O^+(1,1) \cap \tilde{O}(1,1)$ est un sous-groupe commutatif du groupe $O^+(1,1)$.

II.B - Le groupe $O^+(1,1) \cap \tilde{O}(1,1)$ est-il compact ?

II.C — Montrer que les matrices éléments de $O^+(1,1)$ sont diagonalisables et trouver une matrice $P \in O(2)$ telle que, pour toute matrice $L \in O^+(1,1)$, la matrice tPLP soit diagonale.

II.D – Montrer que le groupe $O^+(1,1)$ est commutatif.

III « Décomposition standard » d'un élément du groupe de Lorentz O(1,3)

 $\pmb{III.A}$ – Soit $L=(\ell_{i,j})_{1\leqslant i,j\leqslant 4}\in O(1,3).$ Montrer l'inégalité $\ell^2_{1,1}\geqslant 1.$

III.B – Soient $L=(\ell_{i,j})_{1\leqslant i,j\leqslant 4}$ et $L'=(\ell'_{i,j})_{1\leqslant i,j\leqslant 4}$ deux éléments de $\tilde{O}(1,3)$. On pose $L''=LL'=(\ell''_{i,j})_{1\leqslant i,j\leqslant 4}$.

Démontrer les inégalités suivantes :

$$0 \leqslant \sqrt{\sum_{k=2}^{4} \ell_{1,k}^2} \sqrt{\sum_{k=2}^{4} \ell_{k,1}'^2} + \sum_{k=2}^{4} \ell_{1,k} \ell_{k,1}' < \ell_{1,1}''$$

En déduire que l'ensemble $\tilde{O}(1,3)$ est un sous-groupe du groupe de Lorentz O(1,3). On pose

$$G = \left\{ \begin{pmatrix} 1 & 0_{1,3} \\ 0_{3,1} & R \end{pmatrix}, \ R \in SO(3) \right\}$$

III.C – Justifier que G est un sous-groupe de $O^+(1,3) \cap \tilde{O}(1,3)$ isomorphe à SO(3).

Soient $L = (\ell_{i,j})_{1 \leqslant i,j \leqslant 4} \in O^+(1,3) \cap \tilde{O}(1,3)$ et $a = \begin{pmatrix} \ell_{2,1} \\ \ell_{3,1} \\ \ell_{4,1} \end{pmatrix}$.

III.D – Montrer que, si le vecteur a est nul, alors la matrice L appartient au groupe G.

III.E - Construction d'une rotation particulière

III.E.1) Dans l'espace \mathbb{R}^3 euclidien usuel, montrer que, pour tous vecteurs u et v de \mathbb{R}^3 de même norme, il existe une rotation r telle que r(u) = v.

III.E.2) Écrire, en langage Maple ou Mathematica, une fonction (ou procédure) rotation, de paramètres U et V, renvoyant :

- False si U et V n'ont pas la même norme;
- une matrice R de SO(3) telle que RU = V si U et V ont même norme.

III.F – On suppose dans cette question que le vecteur a est non nul.

III.F.1) Déduire de la question III.E.1 qu'il existe un élément L_1 de G tel que l'on a :

$$L_1L = \begin{pmatrix} \ell_{1,1} & \ell_{1,2} & \ell_{1,3} & \ell_{1,4} \\ \alpha & \lambda_1 & \lambda_2 & \lambda_3 \\ 0 & \mu_1 & \mu_2 & \mu_3 \\ 0 & \nu_1 & \nu_2 & \nu_3 \end{pmatrix}$$

où α est un réel strictement positif que l'on précisera, λ_1 , λ_2 , λ_3 , μ_1 , μ_2 , μ_3 , ν_1 , ν_2 et ν_3 sont des réels qu'on ne cherchera pas à déterminer.

On fixe désormais de tels coefficients α , λ_1 , λ_2 , λ_3 , μ_1 , μ_2 , μ_3 , ν_1,ν_2 et ν_3 .

III.F.2) Soient $v_2 = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}$ et $v_3 = \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$. Montrer que v_2 et v_3 sont deux vecteurs unitaires orthogonaux

de \mathbb{R}^3 muni de sa structure euclidienne usuelle.

 $\textbf{III.F.3)} \ \ \text{Soit} \ R_2 \in SO(3). \ \ \text{On pose} \ L_2 = \begin{pmatrix} 1 & 0_{1,3} \\ 0_{3,1} & R_2 \end{pmatrix} \in G. \ \ \text{Montrer que l'on peut choisir} \ R_2 \ \ \text{tel que}$

$$L_1 L L_2 = \begin{pmatrix} \ell_{1,1} & \beta_1 & \beta_2 & \beta_3 \\ \alpha & \delta_1 & \delta_2 & \delta_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

où $\beta_1,\,\beta_2,\,\beta_3,\,\delta_1,\,\delta_2$ et δ_3 sont des réels qu'on ne cherchera pas à déterminer.

III.F.4) Montrer que les réels β_2 , β_3 , δ_2 et δ_3 sont nuls.

III.G – En déduire que toute matrice L de $O^+(1,3) \cap \tilde{O}(1,3)$ peut s'écrire sous la forme d'un produit du type

$$L = \begin{pmatrix} 1 & 0_{1,3} \\ 0_{3,1} & R \end{pmatrix} \begin{pmatrix} \cosh \gamma & \sinh \gamma & 0 & 0 \\ \sinh \gamma & \cosh \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0_{1,3} \\ 0_{3,1} & R' \end{pmatrix}$$

où R et R' sont deux éléments de SO(3) et γ est un réel.

III.H – Écrire, en langage Maple ou Mathematica, une fonction ou une procédure permettant d'obtenir une telle décomposition d'une matrice de $O^+(1,3) \cap \tilde{O}(1,3)$.

On pourra utiliser la fonction rotation écrite précédemment.

III.I – La décomposition obtenue est-elle unique?

• • • FIN • • •